Quantcast
Channel: Existence of $A$ such that $ \lim_{x\to\infty}\operatorname{poly}(x) e^{-x} \sum_{n\in A} \frac{x^n}{n!}=1 $ - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 4

Existence of $A$ such that $ \lim_{x\to\infty}\operatorname{poly}(x) e^{-x} \sum_{n\in A} \frac{x^n}{n!}=1 $

$
0
0

I want to know if there exists a set $A \subseteq \mathbb{N}$ such that$$\lim_{x\to\infty} x^2 e^{-x} \sum_{n\in A} \dfrac{x^n}{n!}=1$$

More generally, the question will be the existence of a set $A$ that$$\lim_{x\to\infty}\operatorname{poly}(x) e^{-x} \sum_{n\in A} \dfrac{x^n}{n!}=1$$


When $A$ is finite, it is obvious that the limit must be $0$. But when $A$ is infinite, the structure of $A$ can be very complex, and I don't know how to proceed further.


Viewing all articles
Browse latest Browse all 4

Latest Images

Trending Articles





Latest Images